今天OpenAI推出了全新的o3-pro模型,这是继o3和o3‑mini之后,专为追求“可靠性”而非速度的大型推理模型,通过深度思考,利用更大算力和更长思考时间,o3‑pro有能力处理复杂逻辑推理,比如数学、科学、编程、商业决策等,目前便携AI聚合API已经支持最新的o3-pro模型,本文分享下调用方法。
一、o3-pro模型介绍
o3-pro可以进行“更深的思考”,基于o3架构,增加推理计算,优化链式思考,提升复杂任务表现,官方建议将o3‑pro用于“高挑战、高价值、需要高度准确性且时间延迟可以接受”的任务。
以下是OpenAI官方对于o3-pro的介绍:
The o-series of models are trained with reinforcement learning to think before they answer and perform complex reasoning. The o3-pro model uses more compute to think harder and provide consistently better answers.
o3-pro is available in the Responses API only to enable support for multi-turn model interactions before responding to API requests, and other advanced API features in the future. Since o3-pro is designed to tackle tough problems, some requests may take several minutes to finish. To avoid timeouts, try using background mode.
翻译:
o系列模型通过强化学习进行训练,具备“先思考再作答”的能力,能够执行复杂的推理任务。
其中,o3-pro模型使用了更多计算资源,以便“更深入地思考”,从而提供更稳定、更优质的回答。o3-pro 仅在 Responses API 中提供,旨在支持模型在响应 API 请求前进行多轮对话交互,并为未来的高级 API 功能奠定基础。
由于 o3-pro 专为解决复杂问题而设计,部分请求可能需要几分钟才能完成。为了避免请求超时,建议使用后台模式(background mode)。
总的来说,o3-pro思考更久,能力更强,可以进行更复杂的推理任务,但是非常耗时。
o3-pro价格如下:
- 输入token:$20/1M tokens
- 输出token:$80/1M tokens
二、o3-pro模型调用方法
o3-pro模型名称:o3-pro、o3-pro-2025-06-10
o3-pro只能使用Responses API,传统的Chat Completions API无法调用。
下面以Python为例,介绍下如何调用o3-pro。示例中的api_key
可以在网站后台获取,获取方法:《便携AI聚合API新建令牌(API key)教程》。
1、OpenAI包调用
def response_openai(): from openai import OpenAI client = OpenAI( api_key="sk-234345", base_url=f'https://api.bianxie.ai/v1' ) response = client.responses.create( model="o3-pro", input=[ { "role": "user", "content": "Write a one-sentence bedtime story about a unicorn." } ] ) print(response.json())
返回示例:
{ "id": "resp_6849735d219881a28f8a567b1d3070550949fa752fa96f08", "created_at": 1749644125, "error": null, "incomplete_details": null, "instructions": null, "metadata": { }, "model": "o3-pro-2025-06-10", "object": "response", "output": [ { "id": "rs_68497370d9f881a2a4c639f73758a5cb0949fa752fa96f08", "summary": [ ], "type": "reasoning", "status": null }, { "id": "msg_68497370daf481a29dc7ba6a5fd71b690949fa752fa96f08", "content": [ { "annotations": [ ], "text": "As moonlight painted the clouds silver, a gentle unicorn tiptoed through dream-dust meadows, collecting children’s worries in her shimmering mane and replacing them with whispers of starlit peace.", "type": "output_text" } ], "role": "assistant", "status": "in_progress", "type": "message" } ], "parallel_tool_calls": true, "temperature": 1, "tool_choice": "auto", "tools": [ ], "top_p": 1, "max_output_tokens": null, "previous_response_id": null, "reasoning": { "effort": "medium", "generate_summary": null, "summary": null }, "service_tier": "default", "status": "completed", "text": { "format": { "type": "text" } }, "truncation": "disabled", "usage": { "input_tokens": 17, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 46, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 63 }, "user": null, "background": false, "store": true }
2、curl调用
import requests url = f"https://api.bianxie.ai/v1/responses" headers = { "Content-Type": "application/json", "Authorization": f"Bearer sk-2jsodfjo" } data = { "model": "o3-pro", "input": "Tell me a three sentence bedtime story about a unicorn." } response = requests.post(url, headers=headers, json=data) print(response.json())
返回示例:
{ "id": "resp_684977361f8081a18b547b259f2d72c20ffee4a22ce28380", "object": "response", "created_at": 1749645110, "status": "completed", "background": false, "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "o3-pro-2025-06-10", "output": [ { "id": "rs_6849774897a081a1ac739a829fd56a230ffee4a22ce28380", "type": "reasoning", "summary": [] }, { "id": "msg_68497748998881a1b8868097f2ed564e0ffee4a22ce28380", "type": "message", "status": "in_progress", "content": [ { "type": "output_text", "annotations": [], "text": "As Luna the silver-maned unicorn tiptoed through the moonlit forest, her horn softly glowed and stitched tiny stars back into holes in the night sky. Each twinkling stitch hummed a lullaby that drifted into every woodland burrow, lulling even the busiest fireflies to sleep. When her work was done, Luna curled beside a quiet pond, and the sky, now perfectly mended, shimmered like a gentle blanket over all the dreaming creatures below." } ], "role": "assistant" } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": "medium", "summary": null }, "service_tier": "default", "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 17, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 104, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 121 }, "user": null, "metadata": {} }