GPT-5 Pro是OpenAI开发的GPT-5模型的高级变体,支持更深度的思考,专为需要深度推理、复杂任务和高精度输出的场景设计,8月正式登录ChatGPT,10月6日推出API版本,模型名字:gpt-5-pro、gpt-5-pro-2025-10-06,便携AI聚合API已经支持最新版GPT-5 Pro官方API,分享下具体的使用方法。
一、GPT-5 Pro介绍
GPT-5是统一系统的基础版,包含智能路由器自动切换“快速模式”和“思考模式”;而GPT-5 Pro是专属的“深度模式”,强制高计算投入,适合专业用户,其特点如下:
- 增强推理能力:默认启用高强度推理模式(reasoning.effort: high),支持更长的思考链(chain of thought)和多步问题求解,特别适合复杂科学、数学、编码和数据分析任务。在GPQA(研究生级物理问题基准)上准确率达88.4%,显著优于前代模型如GPT-4o或o3。
- 上下文与输出限制:最大输出令牌数高达272,000(比标准GPT-5的128,000更多),支持处理大型代码库、长文档或多文件项目,但响应时间较长(有时需5分钟以上)
GPT-5 Pro的优化领域:
- 编码:擅长前端开发、调试大型仓库,甚至从单一提示生成美观的应用或游戏。
- 健康与专业咨询:在HealthBench基准上得分最高,能像“思想伙伴”一样主动澄清问题,提供更准确的医疗相关建议(但不替代专业医生)。
- 高风险工作流:适用于企业级分析、自动化和工具集成,但可能在创意写作等非结构化任务上表现不如标准模型。
GPT-5 Pro价格如下:
- 输入token:$15/1M tokens
- 输出token:$120/1M tokens
二、GTP-5 Pro使用方法
GPT-5 Pro模型名称:gpt-5-pro、gpt-5-pro-2025-10-06
GPT-5 Pro只能使用Responses API,传统的Chat Completions API无法调用。
下面以Python为例,介绍下如何调用gpt-5-pro-2025-10-06。示例中的api_key可以在网站后台获取,获取方法:《便携AI聚合API新建令牌(API key)教程》。
1、OpenAI包调用
def response_openai():
from openai import OpenAI
client = OpenAI(
api_key=api_key,
base_url=f'https://api.bianxie.ai/v1'
)
response = client.responses.create(
model="gpt-5-pro",
input="Write a one-sentence bedtime story about a unicorn."
)
print(response.json())
返回示例:
{
"id": "resp_0475cbe93c291ac20068f59525f7fc8194b96dd61b82534c4d",
"created_at": 1760924965,
"error": null,
"incomplete_details": null,
"instructions": null,
"metadata": {
},
"model": "gpt-5-pro",
"object": "response",
"output": [
{
"id": "rs_0475cbe93c291ac20068f5955964888194853336e2dc13e56d",
"summary": [
],
"type": "reasoning",
"status": null
},
{
"id": "msg_0475cbe93c291ac20068f59559653c8194804e60376d79d93d",
"content": [
{
"annotations": [
],
"text": "Beneath a sky of sleepy stars, a gentle unicorn tiptoed across the clouds, stitching moonbeams into a soft ribbon that tucked the world in for the night.",
"type": "output_text",
"logprobs": [
]
}
],
"role": "assistant",
"status": "completed",
"type": "message"
}
],
"parallel_tool_calls": true,
"temperature": 1,
"tool_choice": "auto",
"tools": [
],
"top_p": 1,
"max_output_tokens": null,
"previous_response_id": null,
"reasoning": {
"effort": "high",
"generate_summary": null,
"summary": null
},
"service_tier": "default",
"status": "completed",
"text": {
"format": {
"type": "text"
},
"verbosity": "medium"
},
"truncation": "disabled",
"usage": {
"input_tokens": 17,
"input_tokens_details": {
"cached_tokens": 0
},
"output_tokens": 362,
"output_tokens_details": {
"reasoning_tokens": 320
},
"total_tokens": 379
},
"user": null,
"background": false,
"content_filters": null,
"max_tool_calls": null,
"prompt_cache_key": null,
"safety_identifier": null,
"store": true,
"top_logprobs": 0
}
2、curl调用
def response_curl():
import requests
url = f"https://api.bianxie.ai/v1/responses"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
data = {
"model": "gpt-5-pro",
"input": "Write a one-sentence bedtime story about a unicorn."
}
response = requests.post(url, headers=headers, json=data)
print(response.json())
返回示例:
{
"id": "resp_09f3f6f6fa328b520068f595b9b90c8195a39c3a534f9969e7",
"object": "response",
"created_at": 1760925113,
"status": "completed",
"background": false,
"content_filters": null,
"error": null,
"incomplete_details": null,
"instructions": null,
"max_output_tokens": null,
"max_tool_calls": null,
"model": "gpt-5-pro",
"output": [
{
"id": "rs_09f3f6f6fa328b520068f595ef318881959f086641583e6784",
"type": "reasoning",
"summary": []
},
{
"id": "msg_09f3f6f6fa328b520068f595ef322c81959ee52c886a3f6d09",
"type": "message",
"status": "completed",
"content": [
{
"type": "output_text",
"annotations": [],
"logprobs": [],
"text": "As moonlight pooled over the meadow, a gentle unicorn stitched fallen stars into a glowing blanket and tucked the world in, humming the softest lullaby of dreams."
}
],
"role": "assistant"
}
],
"parallel_tool_calls": true,
"previous_response_id": null,
"prompt_cache_key": null,
"reasoning": {
"effort": "high",
"summary": null
},
"safety_identifier": null,
"service_tier": "default",
"store": true,
"temperature": 1.0,
"text": {
"format": {
"type": "text"
},
"verbosity": "medium"
},
"tool_choice": "auto",
"tools": [],
"top_logprobs": 0,
"top_p": 1.0,
"truncation": "disabled",
"usage": {
"input_tokens": 17,
"input_tokens_details": {
"cached_tokens": 0
},
"output_tokens": 423,
"output_tokens_details": {
"reasoning_tokens": 384
},
"total_tokens": 440
},
"user": null,
"metadata": {}
}





