GPT-5 Pro是OpenAI开发的GPT-5模型的高级变体,支持更深度的思考,专为需要深度推理、复杂任务和高精度输出的场景设计,8月正式登录ChatGPT,10月6日推出API版本,模型名字:gpt-5-pro、gpt-5-pro-2025-10-06,便携AI聚合API已经支持最新版GPT-5 Pro官方API,分享下具体的使用方法。
一、GPT-5 Pro介绍
GPT-5是统一系统的基础版,包含智能路由器自动切换“快速模式”和“思考模式”;而GPT-5 Pro是专属的“深度模式”,强制高计算投入,适合专业用户,其特点如下:
- 增强推理能力:默认启用高强度推理模式(reasoning.effort: high),支持更长的思考链(chain of thought)和多步问题求解,特别适合复杂科学、数学、编码和数据分析任务。在GPQA(研究生级物理问题基准)上准确率达88.4%,显著优于前代模型如GPT-4o或o3。
- 上下文与输出限制:最大输出令牌数高达272,000(比标准GPT-5的128,000更多),支持处理大型代码库、长文档或多文件项目,但响应时间较长(有时需5分钟以上)
GPT-5 Pro的优化领域:
- 编码:擅长前端开发、调试大型仓库,甚至从单一提示生成美观的应用或游戏。
- 健康与专业咨询:在HealthBench基准上得分最高,能像“思想伙伴”一样主动澄清问题,提供更准确的医疗相关建议(但不替代专业医生)。
- 高风险工作流:适用于企业级分析、自动化和工具集成,但可能在创意写作等非结构化任务上表现不如标准模型。
GPT-5 Pro价格如下:
- 输入token:$15/1M tokens
- 输出token:$120/1M tokens
二、GTP-5 Pro使用方法
GPT-5 Pro模型名称:gpt-5-pro、gpt-5-pro-2025-10-06
GPT-5 Pro只能使用Responses API,传统的Chat Completions API无法调用。
下面以Python为例,介绍下如何调用gpt-5-pro-2025-10-06。示例中的api_key
可以在网站后台获取,获取方法:《便携AI聚合API新建令牌(API key)教程》。
1、OpenAI包调用
def response_openai(): from openai import OpenAI client = OpenAI( api_key=api_key, base_url=f'https://api.bianxie.ai/v1' ) response = client.responses.create( model="gpt-5-pro", input="Write a one-sentence bedtime story about a unicorn." ) print(response.json())
返回示例:
{ "id": "resp_0475cbe93c291ac20068f59525f7fc8194b96dd61b82534c4d", "created_at": 1760924965, "error": null, "incomplete_details": null, "instructions": null, "metadata": { }, "model": "gpt-5-pro", "object": "response", "output": [ { "id": "rs_0475cbe93c291ac20068f5955964888194853336e2dc13e56d", "summary": [ ], "type": "reasoning", "status": null }, { "id": "msg_0475cbe93c291ac20068f59559653c8194804e60376d79d93d", "content": [ { "annotations": [ ], "text": "Beneath a sky of sleepy stars, a gentle unicorn tiptoed across the clouds, stitching moonbeams into a soft ribbon that tucked the world in for the night.", "type": "output_text", "logprobs": [ ] } ], "role": "assistant", "status": "completed", "type": "message" } ], "parallel_tool_calls": true, "temperature": 1, "tool_choice": "auto", "tools": [ ], "top_p": 1, "max_output_tokens": null, "previous_response_id": null, "reasoning": { "effort": "high", "generate_summary": null, "summary": null }, "service_tier": "default", "status": "completed", "text": { "format": { "type": "text" }, "verbosity": "medium" }, "truncation": "disabled", "usage": { "input_tokens": 17, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 362, "output_tokens_details": { "reasoning_tokens": 320 }, "total_tokens": 379 }, "user": null, "background": false, "content_filters": null, "max_tool_calls": null, "prompt_cache_key": null, "safety_identifier": null, "store": true, "top_logprobs": 0 }
2、curl调用
def response_curl(): import requests url = f"https://api.bianxie.ai/v1/responses" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } data = { "model": "gpt-5-pro", "input": "Write a one-sentence bedtime story about a unicorn." } response = requests.post(url, headers=headers, json=data) print(response.json())
返回示例:
{ "id": "resp_09f3f6f6fa328b520068f595b9b90c8195a39c3a534f9969e7", "object": "response", "created_at": 1760925113, "status": "completed", "background": false, "content_filters": null, "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "max_tool_calls": null, "model": "gpt-5-pro", "output": [ { "id": "rs_09f3f6f6fa328b520068f595ef318881959f086641583e6784", "type": "reasoning", "summary": [] }, { "id": "msg_09f3f6f6fa328b520068f595ef322c81959ee52c886a3f6d09", "type": "message", "status": "completed", "content": [ { "type": "output_text", "annotations": [], "logprobs": [], "text": "As moonlight pooled over the meadow, a gentle unicorn stitched fallen stars into a glowing blanket and tucked the world in, humming the softest lullaby of dreams." } ], "role": "assistant" } ], "parallel_tool_calls": true, "previous_response_id": null, "prompt_cache_key": null, "reasoning": { "effort": "high", "summary": null }, "safety_identifier": null, "service_tier": "default", "store": true, "temperature": 1.0, "text": { "format": { "type": "text" }, "verbosity": "medium" }, "tool_choice": "auto", "tools": [], "top_logprobs": 0, "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 17, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 423, "output_tokens_details": { "reasoning_tokens": 384 }, "total_tokens": 440 }, "user": null, "metadata": {} }